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Abstract
Motivated by the recent article of Shea et al (2009 Am. J. Phys. 77 511) we
examine the exactly solvable problem of two harmonically trapped ultra-cold
bosonic atoms interacting via a short-range potential in one and two dimensions.
A straightforward application in one dimension shows that the energy spectrum
is universal, in addition to clearly illustrating why regularization is not required
in the limit of zero range. The two-dimensional problem is less trivial, requiring
a more careful treatment as compared to the one-dimensional case. Our two-
dimensional analysis reveals that the low-energy physics is also universal,
in addition to providing a simple method for obtaining the appropriately
regularized two-dimensional pseudopotential.

PACS numbers: 03.65.Ge, 03.65.Nk, 34.50.Cx

1. Introduction

Recently, Shea et al [1] have discussed the problem of two bosonic atoms interacting via a
short-range potential and trapped in a three-dimensional (3D) spherically symmetric harmonic
oscillator potential. Their work showed that the low-energy properties of the 3D system are
universal, irrespective of the shape of the potential, provided the range is much smaller than the
oscillator length. In addition, they developed the appropriate pseudopotential for a zero-range
interaction in a manner accessible to undergraduate students of physics with only an elementary
knowledge of quantum mechanics and scattering theory. Specifically, no prior knowledge of
self-adjoint extensions, renormalization techniques or dimensional regularization schemes is
required to obtain equivalent results.

In this paper, we present details of the application of the techniques presented in [1] to
both one and two-dimensional systems. While the one-dimensional (1D) problem proves to be
quite accessible, the two-dimensional (2D) analogue turns out to be rather subtle. The current
interest in the physics of low-dimensional cold atom systems [2] provides additional impetus
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for the results presented in this paper. In particular, it is now conceivable that analogous
experiments to those performed in [3] can also be carried out on low-dimensional systems, in
which case the universal aspects of the spectra derived here may be experimentally verified.

The plan for our paper is as follows. In section 2, we derive the pseudopotentials
appropriate for a two-body interaction in the limit of zero range for both the 1D and 2D
systems. Our approach clearly illustrates the concept of the pseudopotential in the form
of a regularized Dirac delta function while avoiding technical discussions about the self-
adjointness of the two-body Hamiltonian, or of regularization operators required to ensure the
Hamiltonian’s self-adjoint property. Our result for the 1D pseudopotential scenario agrees with
the literature, whereas our 2D pseudopotential is ostensibly different from earlier published
results. Nevertheless, we argue that our 2D pseudopotential is operationally equivalent
provided that it acts upon the appropriate two-body wavefunction. In section 3, we show
that the energy spectra in both the 1D and 2D systems are universal and independent of the
details of the pseudopotential provided that the range of the interaction is much smaller than
the oscillator length. The universal properties for the energy spectrum we find in both 1D and
2D are not well known in the literature1. Our analysis also provides a sharp contrast to the
results presented in [4] where the explicit properties of the regularized Dirac delta function are
needed in order to obtain the spectrum. In section 4, we finish with some concluding remarks
and suggestions for future research in this area.

2. The zero-range pseudopotential

2.1. One-dimensional treatment

We first consider a free system of two identical bosons, each of mass M, interacting via a short-
range symmetric potential in one dimension. In the relative coordinate, r = |r1 − r2| � 0, the
s-state asymptotic scattering wavefunction is given by

ψ(x) ∼ cos(kr + δ(k)) (r > b), (1)

where b is the range of the interaction potential and r ≡ |x|. Barlette et al [5] have already
provided us with the s-wave effective range expansion, relating the phase shift, δ(k), to the
effective range, r0, and scattering length, a, namely

k tan(δ(k)) = 1

a
+

1

2
r0k

2 + O(k4), (2)

where the higher order terms are shape dependent [1]. The effective range, r0, is related
to the range, b, in such a way that as b → 0, r0 → 0. Thus, in the limit of zero range,
equation (2) reduces to k tan(δ(k)) = 1

a
. Following [1], we extrapolate these results to bound

states for positive a, where the S-matrix has poles at cot δ = i. Utilizing the zero-range limit
of equation (2), we immediately obtain k = i

a
, which gives the bound state wavefunction,

ψ(x) = e− r
a (r > 0), (3)

with binding energy E = h̄2k2/M = − h̄2

Ma2 . Equation (3) is exact for a zero-range potential
and holds for b �= 0 provided the size of the bound two-body system is much larger than
the range of the potential responsible for the binding. Under these conditions, it is possible
to construct an effective potential that reproduces the shape-independent results we have just

1 To our knowledge, the universal spectrum in 1D and 2D has never been rigorously established in the literature. In
[4], no details are provided as to how the energy spectrum is obtained for 1D or 2D (see e.g. their equations (20) and
(21)). The authors in [4] simply state that ‘matters are more complicated in two dimensions because of logarithmic
singularities’.
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obtained. To this end, we consider the 1D Laplacian of equation (3) with respect to the
argument, and recall that r ≡ |x|. Performing this operation gives

d2ψ(x)

dx2
= 1

a2
e− |x|

a

(
d|x|
dx

)2

− 1

a
e− |x|

a
d2|x|
dx2

. (4)

Using the relations
( d|x|

dx

)2 = 1 and d2|x|
dx2 = 2δ1D(x) in equation (4) yields

− h̄2

M

d2ψ(x)

dx2
− 2h̄2

Ma
δ1D(x) e− |x|

a = − h̄2

Ma2
e− |x|

a , (5)

which, upon the substitutions E = − h̄2

Ma2 and ψ(x) = e− r
a , reduces to

− h̄2

M

d2ψ(x)

dx2
− 2h̄2

Ma
δ1D(x)ψ(x) = Eψ(x). (6)

Equation (6) is nothing more than the time-independent Schrödinger equation from which we
see that the pseudopotential

V 1D
pp (x) = − 2h̄2

Ma
δ1D(x), (7)

reproduces the earlier results for the wavefunction and binding energy for any zero-range
potential with a given scattering length. This zero-range pseudopotential is in complete
agreement with the literature [4, 6, 7], and naturally illustrates why no regularization of the
Dirac delta function is required in one dimension.

2.2. Two-dimensional treatment

We now move on to consider the same system as above, but now in strictly two dimensions. In
2D the relative coordinate, r = |r1 − r2|, s-state asymptotic scattering wavefunction is given
by [8]

ψ(r) = u(r)√
r

= π

2
(cot(δ)J0(kr) − N0(kr)) (r > b) (8)

where b is the range of the potential and J0(kr) and N0(kr) are, respectively, the zero-order
Bessel and Neumann functions. Before we present our derivation of the 2D pseudopotential,
it is worthwhile clarifying our convention for the scattering length in two dimensions.

In 1D and 3D systems, the definition of the s-wave scattering length is unambiguous.
Specifically, in the asymptotic region, and E → 0, the 1D and 3D problems reduce to

d2

dr2
u(r) = 0, (9)

where u(r) = rψ(r) in three dimensions and, letting r = |x|, u(r) = ψ(r) in one dimension.
This above equation is solved by u(r) = C(r − a) where a is called the scattering length.
In other words, a is identified as the intercept of the zero-energy wavefunction (or its
extrapolation) on the horizontal r-axis. In 2D, we define u(r) = √

rψ(r) and obtain the
asymptotic, reduced radial equation

d2

dr2
u(r) +

u(r)

4r2
= −k2u(r). (10)

Now, as before, we let k → 0 and are required to solve the differential equation

d2

dr2
u(r) +

u(r)

4r2
= 0. (11)

3
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The solution to equation (11) is given by the function u(r) = d1
√

r ln r +d2
√

r where d1 and d2

are constants of integration. Next, we rewrite our solution in the form u(r) = C
√

r(ln r−ln a).
Following the same arguments as for the 1D and 3D cases, we define the scattering length as
the node in the asymptotic zero-energy wavefunction. Note that by definition, the scattering
length in 2D is strictly positive, which is in stark contrast to the 1D and 3D systems where a
can be of either sign [1].

Coming back to the problem at hand, we consider an interaction potential of zero range
and utilize the effective range expansion [9]2

cot(δ(k)) = 2

π

(
ln

(
ka

2

)
+ γ

)
, (12)

where γ is the Euler constant, δ(k) is the scattering phase shift and a is the previously defined
scattering length. As before, we can extrapolate our results to a bound state. Thus, we have
i = 2

π

(
ln

(
ka
2

)
+ γ

)
which reduces to k = 2i e−γ

a
. Substitution of the latter expression into the

scattering wavefunction, (8), gives

ψ(r) = π

2

(
iJ0

(
2i e−γ r

a

)
− N0

(
2i e−γ r

a

))
(r > 0). (13)

The above equation can be rewritten in terms of the modified Bessel functions, I0 and K0, by
using the relation [10]

J0(iy) = I0(y), (14)

and

N0(iy) = iI0(y) − 2

π
K0(y) (15)

where y is a generic argument. Using equations (14) and (15) enables us to obtain the bound
state wavefunction, namely

ψ(r) = K0

(
2 e−γ r

a

)
(r > 0), (16)

with binding energy E = − 4h̄2

Ma2e2γ . The appropriate 2D pseudopotential can now be obtained
by following the same arguments as for the 1D case. Namely we first make the substitution
r = r(r), and then take the 2D Laplacian of our bound state wavefunction. Some simple
algebra gives

∇2ψ(r) = 2 e−γ

a

(
r ′(r)

r
+ r ′′(r)

)(
K ′

0

(
2 e−γ r(r)

a

))
+

4r ′(r)2 e−2γ

a2

(
K ′′

0

(
2 e−γ r(r)

a

))
,

(17)

where the primes denote derivatives with respect to the specific arguments. We now make use
of the following useful properties of K0 [10]:

K ′′
0

(
2e−γ r(r)

a

)
= K0

(
2 e−γ r(r)

a

)
− a

2 e−γ r(r)
K ′

0

(
2 e−γ r(r)

a

)
, (18)

and

K ′
0

(
2 e−γ r(r)

a

)
= a

2 e−γ r ′(r)
∂

∂r

(
K0

(
2 e−γ r(r)

a

))
. (19)

2 Note that the details of the shape-independent part of the effective range expansion do not result in a different
pseudopotential. For example, using the 2D effective range expansion, equation (19), from [4] leads to an identical
pseudopotential.
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Equations (18) and (19), along with ψ(r) = K0
( 2 e−γ r(r)

a

)
, allow us to rewrite equation (17) as

∇2ψ(r) =
(

r ′(r)
r

+ r ′′(r) − r ′(r)2

r(r)

)
1

r ′(r)
∂

∂r
ψ(r) +

4r ′(r)2

a2 e2γ
ψ(r). (20)

We now make the important observation that the term in the parentheses on the right-hand
side of equation (20) can be rewritten in terms of the 2D Laplacian acting on ln(r(r)), namely

r ′(r)
r

+ r ′′(r) − r ′(r)2

r(r)
= r(r)∇2(ln(r(r))). (21)

Use of the expression above, and replacing r(r) by r, allows us to write equation (20) as

− h̄2

M
∇2ψ(r) +

h̄2

M
∇2 ln(r)r

∂

∂r
ψ(r) = − 4h̄2

Ma2 e2γ
ψ(r). (22)

Finally, substituting E = − 4h̄2

Ma2 e2γ and ∇2(ln(r)) = 2πδ2d(	r) (see [7]) into equation (17)
yields

− h̄2

M
∇2ψ(r) +

2πh̄2

M
δ2D(	r)r ∂

∂r
ψ(r) = Eψ(r). (23)

Evidently, the pseudopotential

V 2D
pp (r) = 2πh̄2

M
δ2D(	r)r ∂

∂r
(24)

will reproduce the bound state wavefunction and binding energy for any zero-range potential
in two dimensions. Note that in contrast to 1D, the Dirac delta function is modified by r∂/∂r ,
which yields well-defined behaviour at the origin. Indeed, this modification is the so-called
regularization operator referred to in the literature, which is invoked to ensure self-adjoint
property of the two-body Hamiltonian [4, 6, 7, 11, 12]3. In fact, our equation (24) is simply
a member of a family of 2D pseudopotentials [13], any of which will reproduce the shape-
independent results we have just obtained. In order to clarify this point, let us consider the 2D
zero-range pseudopotential as derived by Wódkiewicz in [6], which is a particular member of
the 2D family4:

V W(r) = −a2δ
2D(	r)

[
1 − ln

(√
π

r

L
e

γ

2

)
r

∂

∂r

]
, (25)

where a2 is a coupling constant, γ is the Euler constant and L is a characteristic length.
This pseudopotential is clearly of a different form from that obtained in equation (24). We
now proceed to investigate the effects of equations (24) and (25) as r → 0+. Allowing
equation (24) to operate on the bound state wavefunction gives

V (r)ψ(r) = 2πh̄2

M
δ2D(	r)r

(
−2 e−γ

a
K1

(
2 e−γ r

a

))
. (26)

As r → 0+ the first-order, modified Bessel function approaches K1(y) → 1
y

and our expression
in equation (26) reduces to

V (r)ψ(r) = −2πh̄2

M
δ2D(	r). (27)

3 In the language of this reference, � = +∞ is the appropriate 2D �-potential which reproduces our result, namely
equation (24).
4 In the language of [12], this potential belongs to the � = (

√
π/L) exp(γ /2) family of 2D pseudopotentials.
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We now similarly investigate VW, and easily obtain

V W(r)ψ(r) = −a2δ
2D(	r)

[
K0

(
2 e−γ r

a

)
− ln

(√
π

r

L
e

γ

2

)
r

(
−2 e−γ

a
K1

(
2 e−γ r

a

))]
.

(28)

Given that r
(− 2 e−γ

a
K1

(
2 e−γ r

a

)) → −1 for r → 0+, we also have the relation K0
(

2 e−γ r
a

) →
−ln e−γ r

a
− γ . These two properties allow us to write the small r behaviour of (28) as

V W(r)ψ(r) = −a2δ
2D(	r)

(
ln

(
a
√

πe
γ

2

L

))
. (29)

The coupling constant a2 can now be related to our scattering length a as follows. In [6], the
bound state energy in terms of a2 is given by

E = −4h̄2π

ML2
e− 4h̄2π

Ma2
−γ

. (30)

This energy must be the same as our binding energy given in terms of the scattering length,
namely E = − 4h̄2

Ma2 e2γ . Equating these expressions gives us the desired relationship between
a2 and the scattering length a:

a2 = 2πh̄2

M

(
ln

(
a
√

π e
γ

2

L

))−1

. (31)

Using this expression along with (29) gives us

V W(r)ψ(r) = −2πh̄2

M
δ2D(	r). (32)

Consequently, we see that as r → 0+ both our pseudopotential, V (r), and the pseudopotential
of Wódkiewicz, V W(r), are operationally equivalent over the appropriate space of
wavefunctions [13]. Thus, although the pseudopotentials given by equations (24) and (25)
have different forms, they both lead to the same low-energy physics. Indeed, in the next
section, we expand upon this result by showing that the energy spectrum of the 1D and 2D
systems is independent of the details of the interaction potential, provided the range of the
potential is much smaller than the oscillator length.

3. Energy spectrum of the two-body problem

3.1. One-dimensional treatment

Consider the problem of two identical bosons, each of mass M, confined by a 1D harmonic
oscillator potential. To begin, we will first consider the two particles to be non-interacting.
Each particle is subject to the potential 1

2Mw2x2. In the centre of mass, X, and relative
coordinate, x, we have the Hamiltonian

H = − h̄2

2μ

d2

dx2
+

1

2
μω2x2 − h̄2

2Mc

d2

dX2
+

1

2
Mcω

2X2, (33)

where μ = M/2 is the reduced mass and Mc = 2M is the total mass of the system. As we
will ultimately be interested in the two-body interaction between the atoms, we focus on the
relative coordinate, where the time-independent Schrödinger equation is given by

− h̄2

M

d2ψ(x)

dx2
+

1

4
Mw2x2ψ(x) = Eψ(x), (34)

6
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and E is the relative energy. Equation (34) is simplified by defining η = 2E
h̄ω

, z = x√
2l

, l2 = h̄
Mω

,
which correspond to the dimensionless energy, dimensionless length and oscillator length,
respectively. The preceding substitutions transform equation (34) into

−d2ψ

dz2
+ z2ψ = ηψ. (35)

We now assume that the solution to (35) is of the form ψ = e− z2

2 f (z), where f (z) is some
function of z. By defining y = z2 and f (z) = w(y) we can write ψ = e− y

2 w(y), which upon
substitution into equation (35) gives

y
d2

dy2
w(y) +

(
1

2
− y

)
d

dy
w(y) − 1 − η

4
w(y) = 0. (36)

This equation is of the confluent hypergeometric type [10] and as such is solved by a linear
combination of confluent hypergeometric functions. Equation (36) is of the general form

d2

dy2
v(y) + (b − y)

d

dy
v(y) − av(y) = 0, (37)

and for non-integral b has the solution [10]

v(y) = c1M(a, b, y) + c2y
1−bM(a − b + 1, 2 − b, y), (38)

where M is the confluent hypergeometric function of the first kind [10]. The solution to
equation (36) is therefore given by

w(y) = c1M

(
1 − η

4
,

1

2
, y

)
+ c2y

1
2 M

(
3 − η

4
,

3

2
, y

)
. (39)

Equation (39), along with our prior definitions, gives us the wavefunction

ψ(z) =
(

c1M

(
1 − η

4
,

1

2
, z2

)
+ c2(z

2)
1
2 M

(
3 − η

4
,

3

2
, z2

))
e− z2

2 , (40)

where we recall z = x√
2l

. The ratio, c1
c2

, can be extracted by investigating the large z behaviour
of equation (40). For large argument, y, the behaviour of M is given by

M(p, q, y) → 
(q)


(p)
yp−q ey. (41)

Use of relation (41) gives us the large z behaviour of our solution, equation (40), namely

ψ(z) �
(

c1



(
1
2

)



( 1−η

4

) + c2



(
3
2

)



( 3−η

4

)
)

z− 1+η

2 e
z2

2 . (42)

For ψ(z) not to diverge at large z, the term in the parentheses must vanish. Forcing this term
to vanish leaves us with the relation

c1

c2
= − 


( 1−η

4

)
2


( 3−η

4

) . (43)

Next, we consider the same system, except now the two particles interact via a short-range
symmetric potential. We again solely concern ourselves with the relative coordinate for which
the time-independent Schrödinger equation reads

− h̄2

M

d2

dx2
ψ(x) +

(
1

4
Mω2x2 + Vs(x)

)
ψ(x) = Eψ(x), (44)

and Vs(x) is a generic short-range interaction potential. If we now exclusively consider the
region where |x| → 0+, the harmonic potential vanishes. We are then left with solving the

7
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problem of a short-range interaction potential, which we will take to be of zero range, so that
the wavefunction is given by equation (3). Note that even if the interaction has a finite range,
b, the harmonic potential can be ignored if μω2b2 � h̄ω, which gives b/l � 1 for the validity
of the spectrum derived below. In the the small |x| region, we have, to within a constant,

ψ(x) ∼ (a − |x|). (45)

This solution must join smoothly with our solution to the harmonic potential problem. We
therefore must investigate the small |x| behaviour of equation (40) in an effort to join it
smoothly with equation (45). For small values of y the confluent hypergeometric function
M(p, q, y) goes to unity and thus the small z behaviour of equation (40) is given by

ψ(z) ∼ (
c1 + c2(z

2)
1
2
)
. (46)

Recalling that (z2)
1
2 = |x|√

2l
, we can rewrite equation (46) as

ψ(x) ∼
(

−c1

c2

√
2l − |x|

)
. (47)

Relating equations (45) and (47) gives us

a

l
= −c1

c2

√
2, (48)

which, along with equation (43), yields

a

l
= 1√

2

(



( 1−η

4

)



( 3−η

4

)
)

. (49)

Equation (49) is identical to the result obtained by Busch et al [4] but has been derived here
with no explicit mention of the form of the interaction. Therefore, the energy spectrum in 1D
is universal, and independent of the shape of the short-range interaction potential, provided
the range is much smaller than the oscillator length.

3.2. Two-dimensional treatment

While the procedure to determine the energy spectrum in 2D closely follows the 1D treatment,
there are additional complications associated with 2D which warrant further discussion. Other
than dimensionality, the system we consider is identical to that presented in section 3.1.
Therefore, we immediately write the non-interacting Schrödinger equation in the relative
coordinate as

− h̄2

M

d2

dr2
u(r) +

(
1

4
Mω2r2 − h̄2

M

1

4r2

)
u(r) = Eu(r), (50)

where u(r) = √
rψ(r). Upon making the same substitutions as in the 1D problem, we obtain

the following differential equation:

− d2

dz2
u +

(
z2 − 1

4z2

)
u = ηu. (51)

Assuming that the solution is of the form u = √
z e− z2

2 f (z) we can rewrite equation (51) as

y
d2

dy2
w(y) + (1 − y)

d

dy
w(y) − 2 − η

4
w(y) = 0. (52)

8
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From a comparison with equation (37), we see that this equation (52) is also of the confluent
hypergeometric kind. The solution to equation (52) is given by [14]

w(y) = c1M

(
2 − η

4
, 1, y

)
+ c2W

(
2 − η

4
, 1, y

)
, (53)

where M and W are confluent hypergeometric functions of the first and second kind,
respectively. Equation (53) typifies the central complication associated with the 2D case,
namely the second argument of W is of integral value; in 1D, the second argument of W is
1/2. When the second argument of W is non-integral, it may be written in terms of M, namely
[14]

W(a, b, y) = y1−bM(a − b + 1, 2 − b, y), (54)

which explains why equation (39) can be written solely in terms of M. In 2D the integral value
of the second argument of W does not grant us the ability to use equation (54). This is not an
insurmountable obstacle, as we now show.

Our solution (53) along with the ansatz that u = √
z e− z2

2 f (z) gives

u(z) =
(

c1M

(
2 − η

4
, 1, z2

)
+ c2W

(
2 − η

4
, 1, z2

))√
z e− z2

2 , (55)

where we recall z = r√
2l

. The ratio, c1
c2

, is once again obtained by investigating the large z

behaviour of equation (55), where the functions M and W behave as follows [14]:

M(p, q, y) → 
(q)


(p)
yp−q ey, (56)

and

W(p, q, y) → π cot(πp)

(q)


(p)
yp−q ey. (57)

Use of relations (56) and (57) gives us the large z behaviour of u(z), namely

u(z) � (c1 + c2π cot(πp))z2p−3/2 e
z2

2 , (58)

where p ≡ 2−η

4 . Since equation (58) must correspond to a physical state, the term in the
parentheses must vanish at large z, leaving

c1

c2
= −π cot(πp) = ψ̃(p) − ψ̃(1 − p), (59)

where ψ̃(p) is the digamma function and the second equality is a fundamental property of the
digamma function [10].

In the presence of a generic central short-range potential, Vs(r), equation (50) reads

− h̄2

M

d2

dr2
u(r) +

(
1

4
Mω2r2 + Vs(r) − h̄2

M

1

4r2

)
u(r) = Eu(r), (60)

where again u(r) = √
rψ(r). As before, we now consider the region r → 0+, in which the

harmonic potential vanishes leaving us with the problem of a short-range potential. For a
zero-range interaction (for finite range, we again require b/l � 1), Vs(r) → 0 for all r �= 0
and in the asymptotic region equation (60) is simply

d2

dr2
u(r) +

1

4r2
u(r) = −k2u(r). (61)

The solution to equation (61) has already been given in equation (8), which we recall here for
convenience:

u(r) = π

2
(cot(δ)J0(kr) − N0(kr))

√
r. (62)

9
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As we are considering the region where r → 0+ we must explore the small r behaviour of
(62). For y → 0+ the zero-order Bessel and Neumann functions are [8, 10]

J0(y) → 1, (63)

and

N0(y) → 2

π
(ln(y/2) + γ ), (64)

where γ is the Euler constant. Use of equations (63) and (64) along with equation (12) gives
the r → 0+ behaviour of u(r),

u(r) ∼ (ln r − ln a)
√

r. (65)

The above solution must join smoothly with our solution for the harmonic oscillator. We
therefore proceed to investigate the small r behaviour of our solution of the harmonic problem,
equation (55). For small r, and hence small z,M → 1. The problem now is with the small
r behaviour of W . Specifically, what is at issue here is the lack of literature dealing with the
small r behaviour of W when its second argument is integral. The primary reason for this
void is likely due to the fact that there is no elementary relationship between M(p, b, y) and
W(p, b, y) when b is non-integral, as in e.g., equation (54). Fortunately, in a little known
paper published more than 70 years ago, Archibald [15] has developed a useful expression for
W(p, b, y) for integral second argument, which we present here for b = 1:

W(p, 1, y) = M(p, 1, y)(ln(y) + ψ̃(1 − p) + 2γ ) +
∞∑

n=1

(

(n + p)Bn


(p)
(n + 1)n!

)
yn, (66)

where Bn = (
1
p

+ 1
p+1 + · · · + 1

p+n−1

) − 2
(
1 + 1

2 + · · · + 1
n

)
, 
(·) is the gamma function and

again ψ̃(·) is the digamma function. From this expression it is quite evident that the small y
behaviour will be

W(p, 1, y) → ln(y) + ψ̃(1 − p) + 2γ, (67)

and we find the small z behaviour of (55) to be

u(z) � (c1 + c2(ln(z2) + ψ̃(1 − p) + 2γ ))
√

z. (68)

Equation (68) upon the replacement of z = r√
2l

can be written, to within a constant, as

u(r) ∼
(

c1

2c2
+ ln(r) − ln(l) − 1

2
ln(2) +

ψ̃(1 − p)

2
+ γ

)√
r. (69)

Utilizing equations (65) and (69) gives

c1

2c2
− ln(l) − 1

2
ln(2) +

ψ̃(1 − p)

2
+ γ = −ln(a). (70)

Equation (70) simplifies to

c1

c2
+ ψ̃(1 − p) = ln

(
l2

2a2

)
+ 2 ln 2 − 2γ, (71)

which, upon recalling that c1
c2

= ψ̃(p) − ψ̃(1 − p), gives the relation

ψ̃(p) = ln

(
l2

2a2

)
+ 2 ln 2 − 2γ. (72)

The spectrum of the system is finally described by recalling that p = − η

4 + 1
2 , whence

ψ̃

(
1

2
− η

4

)
= ln

(
l2

2a2

)
+ 2 ln 2 − 2γ. (73)
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Equation (73) differs from the result obtained by Busch et al [4] by the last two terms
on the right-hand side. This difference can be traced back to the specific form for the
effective range expansion, namely equation (12), we have used in this paper. If we use
Busch’s expression5, cot(δ(k)) = (2/π) ln(ka), the last two terms on the right-hand side of
equation (73) disappear, in agreement with equation (21) in [4]. Numerically, the difference
between our equation (73) and Busch’s equation (21) is unimportant, as it would almost
certainly not be resolved in experiments. The critical point here is that we have shown that
the 2D spectrum is independent of the details of the short-range potential. In addition, the
complications arising from dimensionality are not due to the logarithmic singularities in the
pseudopotential—as suggested in [4]—but rather from the logarithmic behaviour of W(p, b, y)

for integral b = 1. Indeed, any short-range potential will yield the spectrum above, provided
its range is much smaller than the oscillator length. It is nevertheless interesting to note
that equation (73), without specifying a form for the potential, has naturally led to the same
coupling constant, namely [ln(l2/2a2)]−1 which has been used to characterize the strength of
the regularized 2D zero-range interaction in earlier investigations [4].

4. Conclusions

In this paper, we examined the two-body problem of harmonically trapped ultra-cold atoms
in one and two dimensions. We have shown that the energy spectra for both 1D and 2D are
universal, in that they are independent of the details of the short-range potential, provided the
range of the potential is much less than the oscillator length. Furthermore, we have illustrated
that the concept of a zero-range pseudopotential in low-dimensional systems can be easily
understood without having to invoke the advanced mathematical language of regularization
operators. In contrast to more complicated expressions reported in the literature, we have
shown that our simple 2D zero-range pseudopotential (i.e. equation (24), without logarithmic
singularities in the potential) will yield the same low-energy physics [6, 11–13]. We anticipate
the 1D and 2D spectra presented here to be verified by current experimental methods [3].
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